Manipulating the ORMUS elements

by Barry Carter

The ORMUS elements differ in a fundamental way from their "ordinary" metallic counterparts. In a sense they can be considered to be parallel to the metallic elements on the periodic table. What differentiates this form of matter from "ordinary" matter is that the ORMUS elements are in a high spin state. This means that the atoms are spinning more rapidly than ordinary atoms. This high spin pulls the electron cloud in toward the nucleus of the atom, sort of like an ice skater pulling her arms in to increase the rate of her spin.

As these electrons get closer to the nucleus they pair up into what is called "Cooper pairs" of electrons. (The Cooper pairing phenomenon is named after one of the gentlemen who received a Nobel prize for its discovery.) These electrons, when they are Cooper paired, are no longer available for ordinary shared electron bonding between different elements. This means that they can no longer form ordinary chemical compounds.

Methods have been developed to convert metal to ORMUS. In one way or another these methods induce the high spin state and the Cooper pairing of electrons in the individual atoms or diatoms. It is also possible to convert ORMUS to metal using different methods.

Each of the elements, that can be transformed this way, keep their individual elemental properties through the transition from metal to ORME and to metal again. Some of these properties are common to both the metallic state and the ORMUS state. For example, the m-state rhodium gives water a sticky feel. This is also true of the metallic form--rhodium hydroxide. Also, rhodium seems to be useful as a catalyst in the ORMUS state and in the metallic state.

Because these elements hold on to their electrons so tightly the ordinary spectrographic methods of identifying them simply don't work. The only way we currently know to identify them is to run a spectrographic analysis on a candidate ORMUS sample, then convert it metal and run the spectrographic analysis again. If the first spectrographic analysis shows no metal and the second shows metal then we have identified an ORMUS element.

Though these elements don't form chemical compounds which are bound by electron sharing, they do seem to be involved in chemical compounds in some special ways. I believe that they should be suspected to be present in any chemical compound which cannot be synthesized. Chlorophyll would be an example of this type of compound. I understand that the "secret" ingredient in chlorophyll is the ORMUS form of copper.

Since these elements are not bonded by shared electrons, how might they be bonded? I know of two types of bonds which might apply.

All of these concepts are discussed in greater depth in Hudson's lectures and in Gary's article titled "Paranormal Observations of ORMEs Atomic Structure". These resources can be found at:

Superconductivity is a property of certain substances which are in a special quantum state called a Bose-Einstein Condensate (BEC). A BEC is a large group of atoms which behave as a single atom due to their being in a common state. In the case of the ORMUS elements, their superconducting nature creates an energy field around each atom. This energy field is called a Meissner field. A Meissner field resonance couples individual ORME atoms to the point where many atoms can act like a single atom. This resonance coupling between ORME atoms allows you to perform a sort of shadow chemistry on them.

It appears that there are varying degrees of ORMEishness. An ORME diatom can have all of its electrons paired up or it can have only a portion of its electrons paired up. If you have an ORME diatom which is partially paired this will leave some electrons available for conventional electron bonding with other elements. This ORME diatom will then have one foot in the ORMUS world and one foot in the metal world. You can use these partial ORMEs to manipulate the full ORMEs chemically.

Imagine that you want to collect all the loose male dogs in your town. It might be difficult to chase them all down individually but there might be a simpler way to do this. You could find a female dog in heat and use a known property of male dogs to collect them. You would put the female dog on a leash and lead her through town and pretty soon you will be leading all the loose male dogs around too. These male dogs are not on your leash but they are attracted to the female dog and they will follow you because you are leading her.

In a similar way we can do chemistry on the partial ORME and use the partial ORME to lead the full ORMEs around.

There is another type of bond which we have seen in these ORMUS elements. Since these elements are stimulated by movement in relation to magnetic fields, and since magnetic fields are everywhere, they seem to seek situations where they are protected from movement in relation to magnetic fields. Any type of tight space will limit their movement in relation to magnetic fields. This principle can be used to manipulate them. You can move a fluid containing the ORMUS elements in relation to a magnet and provide a tight space for them to go to and thereby trap them.

We believe that the simple methods to chemically concentrate the ORMUS elements from water that are described in the ORMUS document at also use this second principle. The sodium atoms provided with the lye appear to form a three atom cluster or a triangle. We believe that this triangular molecule provides a nice tight comfy inner space for the ORME to hide in. Similar ring molecules made of carbon, oxygen and chlorine have also been used to trap and chemically manipulate the ORMUS elements.